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Abstract

G-protein-coupled receptors (GPCRs) constitute a large and diverse family of proteins whose primary function is to transduce extracellular
stimuli into intracellular signals. These receptors play a critical role in signal transduction, and are among the most important pharmacological
drug targets. Upon binding of extracellular ligands, these receptor molecules couple to one or several subtypes of G-protein which reside at
the intracellular side of the plasma membrane to trigger intracellular signaling events. The question of how GPCRs select and activate a single
or multiple G-protein subtype(s) has been the topic of intense investigations. Evidence is also accumulating; however, that certain GPCRs can
be internalized via lipid rafts and caveolae. In many cases, the mechanisms responsible for this still remain to be elucidated. In this work, we
extend the mathematical model proposed by Chen et al. [Modelling of signalling via G-protein coupled receptors: pathway-dependent agonist
potency and efficacy, Bull. Math. Biol. 65 (5) (2003) 933–958] to take into account internalization, recycling, degradation and synthesis of the
receptors. In constructing the model, we assume that the receptors can exist in multiple conformational states allowing for a multiple effecter
pathways. As data on kinetic reaction rates in the signalling processes measured in reliable in vivo and in vitro experiments is currently limited
to a small number of known values. In this paper, we also apply a genetic algorithm (GA) to estimate the parameter values in our model.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Signal transduction is the process of conversion of external
signals, such as hormones, growth factors, neurotransmitters
and cytokines, to a specific internal cellular response, such as
gene expression, cell division, or even cell suicide. This pro-
cess begins at the cell membrane where an external stimulus
initiates a cascade of enzymatic reactions inside the cell that
typically includes phosphorylation of proteins as mediators of
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downstream processes [1]. Signal transduction consists of three
processes. The first is reception—an agonist binds to a specific
receptor on the cell membrane that triggers a change in the
receptor molecule. The second is transduction. The change in
the receptor brings about ordered sequences of biochemical
reactions inside the cell that are carried out by enzymes and
linked through second messengers. The third is response. After
receiving the signal, target protein produces response which can
be any of many different cellular activities, such as activation of
a certain enzyme, rearrangement of the cytoskeleton, or changes
in gene expression.

G-protein-coupled receptors (GPCRs) constitute a large and
diverse family of proteins whose primary function is to trans-
duce extracellular stimuli into intracellular signals. GPCRs are
among the most heavily investigated drug targets in the pharma-
ceutical industry. They account for the majority of best-selling
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Fig. 1. Illustration of agonist-directed trafficking hypothesis. When an ago-
nist A1 binds to the receptor R, it activates effector pathway 1 (E1) more
effectively. While, when A2 binds to the receptor R, E2 is favored over E1.
The preferences in pathway activations are indicated by the line thickness.

drugs and about 40% of all prescription pharmaceuticals on the
market [2]. The inactive form of G-protein is a heterotrimer
composed of three subunits, �, � and � with a molecule of
guanosine diphosphate (GDP) bound to the � subunit. The bind-
ing of ligands to receptors causes them to interact with the
G-protein. The interaction of this inactive G-protein with bound
receptor promotes the release of GDP from the � subunit and
the binding of nucleotide guanosine triphosphate (GTP) at the
same site. The G-protein is then released from the receptor and
dissociates into separate �� and �-GTP subunits. The �-GTP is
the active form of the G-protein. The activated �� and �-GTP
subunits in turn stimulate the generation of second messengers
via intracellular effectors, passing on the signal by altering the
activities of selected cellular proteins [3]. Depending on the
type of G-protein to which the receptor is coupled, a variety of
downstream signalling pathways can be activated [4,5]. There
are many examples of a single receptor coupling directly to
more than one cellular signal transduction pathway [6,7]. In tra-
ditional receptor theory, it is predicted that the relative degree
of activation of each effector pathway by an agonist (relative
efficacy) must be the same. More recently, however, evidence
from a variety of systems suggests that some agonists, acting
at a single receptor, may preferentially activate E1, say, while
other agonists, acting at the same receptor in the same system,
may preferentially activate E2 as shown schematically in Fig. 1
[6,7]. These phenomenon termed “agonist-directed trafficking
of receptor stimulus” were originally proposed in [8].

Many mathematical models have been proposed to describe
agonist-directed trafficking of receptor stimulus and promiscu-
ous coupling of receptors in the signal transduction process. In
actual fact, the idea that a receptor can adopt more than one
active state was derived from the concept of agonist-directed
trafficking of a receptor stimulation to explain the ability of
structurally diverse agonists to activate different G-protein-
mediated signaling [6–8]. According to this model, each agonist
is able to promote its own specific active receptor state, lead-
ing to an unlimited number of receptor conformations. Thus,
different active states of the receptor may be associated with a
particular G-protein. In contrast, Leff et al. suggested a three-
state model where the receptor might exist in three states, an
inactive (R) and two active formations (R∗, R∗∗), accounting
for multiple G-protein coupling but limiting the number of ac-
tive conformations [9]. They studied the agonist activity in two

systems, one being an intact system in which receptors and
G-protein are uniformly distributed and the other comprising
of isolated pathways each with a distinct G-protein, operating
independently from the other. Assuming that the efficacy of
each pathway is proportional to the number of receptors ac-
tivated, this model allows for pathway-dependent agonist ef-
ficacy and successfully simulates the differential activation of
effector pathways observed previously with 5-HT2c agonists
[6]. Leff et al. [9] have; however, neglected the role of G-protein
activation and, although different agonist potency has been pre-
dicted for the system of isolated pathways, their intact system
has failed to predict the pathway-dependent agonist potency
which has been observed in various experiments. Chen et al.
[10] proposed a mathematical model which demonstrates the
role of G-proteins in determining pathway-dependent agonist
potency. In their model, the receptor can exist in four confor-
mational states, one inactive and three active states. Chen et al.
[10] have; however, neglected many biological factors concern-
ing cell signalling via GPCRs, such as synthesis, degradation,
internalization and recycling of receptors. Under normal phys-
iological conditions, however, these dynamic trafficking events
take place concurrently with receptor–ligand binding [11–14].

While being a natural activity of receptors linked to signal-
ing, internalization may be a therapeutically useful activity in
itself. Ligands that selectively induce receptor internalization
may have utility in the prevention of HIV-1 infection. This is
because internalization may remove critical co-receptors for
membrane fusion and subsequent HIV-1 infection [15–17]. In
fact, this approach may be superior to blocking the HIV-1 in-
fection. In many cases, the mechanisms responsible for these
dynamic trafficking of receptors still remain to be elucidated.
The focus of our present work is to study the effect of recep-
tors trafficking, including receptors internalization, receptors
synthesis, recycling of receptors and receptors degradation by
extending a mathematical model proposed in [10].

As data on kinetic reaction rates in the signalling processes
measured in reliable in vivo and in vitro experiments is currently
limited to a small number of known values. In this paper, we
also apply a genetic algorithm (GA) to estimate the parameter
values in our model. The GA is an effective stochastic global
search algorithm that is inspired by the evolutionary features of
biological systems [18]. The GAs are the most popular evolu-
tionary techniques, in virtue of their conceptual simplicity, the
ease of programming entailed, and small number of parameters
to be defined. Moreover, they have been shown to outperform
alternative search techniques on difficult problems involving
high dimensional, discontinuous, noisy and multi-modal objec-
tive functions [19,20]. It has been successfully applied to var-
ious problems, such as function optimizations, parameter esti-
mation in biochemical pathways [21–23], cancer gene search
[24] and parameter estimation in mathematical modeling [20].
In the present work, a GA was applied to estimate 18 parame-
ter values in our model and the predictions of the model were
compared with the experimental results obtained by the authors
of [7].

There are some quantitative pharmacological terms that are
useful for our present analysis. Efficacy is defined as the ability
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of a drug to produce a stimulus, indicated by the maximum
effect that can be produced by that drug. Potency, commonly
expressed as the EC50, refers to the concentration or amount of
an agonist needed to produce a 50% of the maximum effect of
that agonist. A full agonist is a ligand that binds to a receptor
and leads to a maximum biological response in the system
under study while a partial agonist is an agonist that does not
elicit as large an effect as a full agonist. An antagonist is a
ligand that binds to a receptor, but does not produce a biological
response, while blocking the actions of agonists. An inverse
agonist means a ligand that binds to a receptor and reduces the
constitutive activity of the receptor, thereby producing an effect
opposite to that of an agonist.

2. The mathematical model

2.1. Model construction

We extend the model proposed in [10], in which receptors are
allowed to exist in multiple conformational states, to include
the receptors synthesis, degradation, internalization and recy-
cling. In the absence of agonists, the receptors can exist in four
different conformational states, one inactive or resting R and
three active Rj∗states, where the superscript j (and subscript j
below) henceforth takes the value of 1, 2 and 3 unless stated
otherwise. Each receptor can bind to a different G-protein sub-
type Gj as shown in Fig. 2(a). The inactive receptors, R, are
converted into an active state Rj∗ with rate constants L+

j . The
parameters K+ and K− represent ligand association and dis-
sociation rates with receptor R, respectively. The effect of the
agonist-directed trafficking of receptor stimulus proposed in [8]
is indicated by the values of the parameters �j , corresponding
to the effect on the various Gj -linked pathways. The numbers
of ligand-bound receptors are denoted by RA while these of the
activated ligand-bound receptor are denoted by R

j∗
A . The ligand

dissociation rates from the ligand-bound activated receptors,
R

j∗
A , are assumed to be K−/�j and the deactivation rates of R

j∗
A

to RA are L−
j /�j , both of which are ligand-dependent. With

one effector pathway, a full agonist or partial agonist which
preferentially binds to an active receptor has �j > 1, while an
antagonist which binds equally well to both active and inac-
tive receptor has � = 1 and an inverse agonist which is more
likely to bind to an inactive receptor has � < 1. This, however,
may not always be the case for a system with multiple effector
pathways. For example, an agonist with �j > 1 for all j and,
say, �1?�2, �3, can increase the number of active receptors in
G1-linked pathway but reduce the number of active receptors
in other conformations and hence behaves as a partial agonist
for one pathway and an inverse agonist for others [9,10].

In the model suggested by Chen et al. [10], they assumed
that the number and location of receptors on the cell surface are
constant, i.e., that no significant synthesis, degradation, inter-
nalization, or recycling of receptors occur over the time frame
for which the model applies. Under normal physiological con-
ditions; however, these dynamic trafficking events take place
concurrently with receptor–ligand binding [11–14,25,26]. The

Fig. 2. Extended model structure of (a) receptor–ligand binding with multiple
receptor conformation. The free receptors are synthesized with rate V while
the ligand–receptor complex internalizes with rate kec and the internalized
ligand–receptor complex degrades with rate kd. (b) G-protein activation of

the Gj -linked pathways, assuming Rj∗ and R
j∗
A

associate with or dissociate
from G-protein at the same rate.

important feature of our model is the receptor synthesis, degra-
dation and trafficking. The rate of new receptor synthesis and
expression on the cell surface as free receptors is V. The rate
constant describing the internalization of receptor–ligand com-
plex is kec. The parameter krec represents the rate constant for
transport of material via vesicles from the endosome back to
the cell surface [27] and kd represents a rate constant for the
routing of receptor–ligand complex from the endosome to the
lysosome, and degradation in the lysosome. Fig. 2(b) shows the
activation of G-protein by the activated receptors. Both ligand-
bound and nonligand-bound activated receptors, denoted by
R

j∗
A and Rj∗, respectively, associate with and dissociate from

G-protein with rate constants k+
j and k−

j for Gj . The inactive
form of the G-protein consists of �, � and � subunits with a
molecule of GDP bound to the � subunit (G�). The interac-
tion of this inactive G-protein with an activated receptor pro-
motes the release of GDP from the � subunit and the binding
of GTP at the same site. We have assumed that the dissocia-
tion of GDP and association of GTP happen instantaneously
and the activated receptor activates the G-protein with a rate
constant kj−act. Active G-proteins are returned to their inactive
state upon hydrolysis of GTP by the GTPase activity found in
the � subunit itself, and the �-GDP and �� subunits (G��) can
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then recombine. In our model, we assume that the inactivation
of G-protein is so fast for our time scale, and thus we consider
it to be a one-step process with rate constant kgtp. Note that
only the �-GTP subunits (G�) are considered as the activated
G-protein in our model.

Based on the model structure in Fig. 2, the law of mass
action leads to the following set of coupled ordinary differential
equations:

dR

dt
= K−RA−

3∑
n=1

L+
n R−K+AR +

3∑
n=1

L−
n Rn∗ + V , (2.1)

dRj∗

dt
= L+

j R − (L−
j + K+A)Rj∗ + K−

�j

R
j∗
A − k+

j GjR
j∗

+ (k−
j + kj−act)R

j∗
G , (2.2)

dR
j∗
A

dt
= K+ARj∗−

(
L−

j

�j

+K−

�j

)
R

j∗
A +L+

j RA−k+
j GjR

j∗
A

+ (k−
j + kj−act)R

j∗
AG − kecR

j∗
A + krecR

j∗
Ai , (2.3)

dR
j∗
AG

dt
= k+

j GjR
j∗
A − (k−

j + kj−act)R
j∗
AG + K+AR

j∗
G

− K−

�j

R
j∗
AG, (2.4)

dR
j∗
G

dt
= k+

j GjR
j∗ − (k−

j + kj−act)R
j∗
G − K+AR

j∗
G

+ K−

�j

R
j∗
AG, (2.5)

dG∗
j

dt
= kj−act(R

j∗
G + R

j∗
AG) − kgtpG��G

∗
j , (2.6)

dRAi

dt
= kecRA − kdRAi − krecRAi , (2.7)

dR
j∗
Ai

dt
= kecR

j∗
A − kdR

j∗
Ai − krecR

j∗
Ai , (2.8)

where G�� = G∗
1 + G∗

2 + G∗
3 and

RA = R0−R−RAi−
3∑

n=1

(Rn∗+Rn∗
A +Rn∗

AG+Rn∗
G +Rn∗

Ai),

(2.9)

Gj = gj − G∗
j − R

j∗
AG − R

j∗
G . (2.10)

In order to obtain the model equations, we assume that the
total number of a G-protein subtype on the cell surface and
the concentration of ligands, denoted by A, remain constant.
Moreover, we also assume that the number of newly synthesized
receptors is approximately equal to the number of degraded
receptors so that the total number of receptors is conserved. The
parameters gj ’s and R0 are the total number of each G-protein

subtype and that of the receptors, respectively. The notation R
j∗
G

and R
j∗
AG denote the number of Gj -precoupled active receptors

and of ligand–receptor–Gj complexes. The initial conditions
for the system of equations are as follows:

R = R0, Gj = gj , at t = 0, (2.11)

with the concentrations of all other species being zero at t = 0.

2.2. Nondimensionalization

We now, in the same manner as in [10], proceed to carry out
nondimensionalization by the following rescaling:

t = t/K−,

G�� = G0G��,

A = a0A,

R
j∗
AG = R0R

j∗
AG,

K
+ = K+a0

K− ,

R = R0R,

G∗
j = G0G

∗
j ,

Rj∗ = R0R
j∗

,

R
j∗
G = R0R

j∗
G ,

L
+
j = L+

j

K− ,

RA = R0RA,

Gj = G0Gj,

R
j∗
A = R0R

j∗
A ,

gj = G0gj ,

L
−
j = L−

j

K− ,

where G0 = g1 + g2 + g3 and thus g1 + g2 + g3 = 1. The con-
stant a0 is chosen such that K

+ = K+a0/K
− = O(1). Since

the binding of G-protein to an activated receptor often leads to
the activation of the G-protein, we assume that the G-protein
activation rate constant kj−act is very large and G-protein dis-
sociation rate constant k−

j is very small. Now, let us make some
approximations by letting

� = K−

k1−act
,

N = R0

G0
,

V = V

R0K− ,

kj−act = kj−act

k1−act
,

kgtp = kgtpG0

K− ,

krec = krec

K− ,

k
−
j = k−

j k1−act

(K−)2 ,

k
+
j = k+

j G0

K− ,

kd = kd

K− ,

kec = kec

K− ,

where �>1. The overbars will be dropped henceforth for
brevity. The nondimensionalized system of equations is then

dR

dt
= RA −

3∑
n=1

L+
n R − K+AR +

3∑
n=1

L−
n Rn∗ + V , (2.12)

dRj∗

dt
= L+

j R − (L−
j + K+A)Rj∗ + R

j∗
A

�j

− k+
j GjR

j∗

+
(

�k−
j + kj−act

�

)
R

j∗
G , (2.13)

dR
j∗
A

dt
= K+ARj∗ −

(
L−

j

�j

+ 1

�j

)
R

j∗
A + L+

j RA − k+
j GjR

j∗
A

+
(

�k−
j + kj−act

�

)
R

j∗
AG − kecR

j∗
A + krecR

j∗
Ai ,

(2.14)

dR
j∗
AG

dt
= k+

j GjR
j∗
A −

(
�k−

j + kj−act

�

)
R

j∗
AG + K+AR

j∗
G

− R
j∗
AG

�j

, (2.15)
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dR
j∗
G

dt
= k+

j GjR
j∗ −

(
�k−

j + kj−act

�

)
R

j∗
G − K+AR

j∗
G

+ R
j∗
AG

�j

, (2.16)

dG∗
j

dt
= N

kj−act

�
(R

j∗
G + R

j∗
AG) − kgtpG��G

∗
j , (2.17)

dRAi

dt
= kecRA − kdRAi − krecRAi , (2.18)

dR
j∗
Ai

dt
= kecR

j∗
A − kdR

j∗
Ai − krecR

j∗
Ai , (2.19)

and

RA = 1 − R − RAi −
3∑

n=1

(
Rn∗ + Rn∗

A

+Rn∗
AG + Rn∗

G + Rn∗
Ai

)
, (2.20)

Gj = gj − G∗
j − NR

j∗
AG − NR

j∗
G . (2.21)

The initial conditions are R=1, Gj =gj with g1 +g2 +g3 =1,
with other species having zero initial concentrations.

Since we have assumed that kj−act is very large, it is reason-

able to rescale R
j∗
G and R

j∗
AG by letting

R
j∗
G = �R̃j∗

G and R
j∗
AG = �R̃j∗

AG. (2.22)

Substituting (2.22) in (2.15), (2.16), (2.17), (2.20) and (2.21)
leads to

dR̃
j∗
AG

dt
= k+

j

�
GjR

j∗
A −

(
�k−

j + kj−act

�

)
R̃

j∗
AG + K+AR̃

j∗
G

− R̃
j∗
AG

�j

, (2.23)

dR̃
j∗
G

dt
= k+

j

�
GjR

j∗ −
(

�k−
j + kj−act

�

)
R̃

j∗
G − K+AR̃

j∗
G

+ R̃
j∗
AG

�j

, (2.24)

dG∗
j

dt
= Nkj−act(R̃

j∗
G + R̃

j∗
AG) − kgtpG��G

∗
j , (2.25)

RA = 1 − R − RAi −
3∑

n=1

(
Rn∗ + Rn∗

A + �R̃n∗
AG

+�R̃n∗
G + Rn∗

Ai

)
, (2.26)

Gj = gj − G∗
j − �NR̃

j∗
AG − �NR̃

j∗
G . (2.27)

To simplify the calculation, we will also assume that the
concentration of G�� is constant instead of varying with G∗

j . In
the limit � → 0, with quasi-steady state analysis, Eqs. (2.23)
and (2.24) yield

R̃
j∗
AG = k+

j Gj

kj−act
R

j∗
A , R̃

j∗
G = k+

j Gj

kj−act
Rj∗. (2.28)

Using (2.28) to eliminate R
j∗
G and R

j∗
AG in (2.13) and (2.14) and

substituting (2.28) in (2.25), our system of equations becomes

dR

dt
= RA −

3∑
n=1

L+
n R − K+AR +

3∑
n=1

L−
n Rn∗ + V (2.29)

dRj∗

dt
= L+

j R − (L−
j + K+A)Rj∗ + R

j∗
A

�j

(2.30)

dR
j∗
A

dt
= K+ARj∗ + L+

j RA −
(

L−
j

�j

+ 1

�j

)
R

j∗
A − kecR

j∗
A

+ krecR
j∗
Ai , (2.31)

dRAi

dt
= kecRA − kdRAi − krecRAi , (2.32)

dR
j∗
Ai

dt
= kecR

j∗
A − kdR

j∗
Ai, −krecR

j∗
Ai , (2.33)

where

RA = 1 − R − RAi −
3∑

n=1

(Rn∗ + Rn∗
A + Rn∗

Ai),

G∗
j = Hjgj

1 + Hj

, Gj = gj − G∗
j ,

Hj ≡ Nk+
j

kgtpG��
(R

j∗
A + Rj∗). (2.34)

Eqs. (2.29)–(2.34) are quasi-steady state equations where
dR̃

j∗
AG/dt , dR̃

j∗
G /dt and dG∗

j /dt have already been set to zero.
These equations can now be used to describe the steady state
of ligand–receptors–G-proteins binding, if all of a parameter
values were known.

3. Parameters estimation

Our model equations (2.29)–(2.34) contain 18 parameters,
L+

j , L−
j , �j , k

+
j , K+, kgtpG��, V , kec, krec and kd for j=1, 2, 3,

but the experimental data available from the literatures are lim-
ited to only a few parameters and only some types of receptors
[28]. When only a few kinetic parameters are available to im-
plement a model of signal transductions, one might resort to
attempting a theoretical estimate of these values. The attempt
could be performed, in principle, by using an “inverse problem”
approach, i.e., by optimizing the unknown parameters of a reac-
tion’s model in order to obtain the best possible agreement be-
tween simulated and experimental data [20–23]. In the present
work we will use GA to estimate these unknown parameters.

The GA is an effective stochastic global search algorithm
that mimics biological evolution [18]. As it is robust, i.e., it uses
only objective function information and not other auxiliary in-
formation, it has been successfully applied to various problems,
such as function optimization and combinatorial optimization,
especially when a rigorous mathematical model is too com-
plicated to be practically implemented [29]. In our problem,
the input to the GA is a set (called a “population”) of vectors
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(called “individuals”) whose elements (called “genomes”) are
the values of those 18 parameters. A fitness function is defined
to be the distance f (x) measured between experimental and
predicted values of the steady state activated G-proteins con-
centration,

f (x) =
⎛
⎝ n∑

i=1

m∑
j=1

{ |ypred(i) − yexp(i)|
|yexp(i)|

}
j

⎞
⎠

2

, (3.1)

where n is the number of data points for each experiment, m is
the number of G-protein subtypes, yexp represents the known
experimental data and ypred is the simulated data of the steady
state activated G-proteins concentration obtained by using GA.
The purpose of the GA is to produce successive populations
of individuals which are generated with the aim of increasing
the fitness of their individuals, i.e., their ability to solve the
optimization problem by decreasing the distance f (x) between
simulated data and experimental data.

In order to estimate the parameter values, we use the forward
time scheme (dR(t)/dt ≈ (R(t + �t) − R(t))/�t) to trans-
form our model equations (2.29)–(2.34) to a system of finite
difference equations

�uk+1 = A�uk + �b, (3.2)

where �uk is a vector of all R and G species at time step k,
A = [aij ] is a coefficient matrix whose elements consist of
those 18 parameters and time step �t , and �b is a constant
vector. This iteration can take an excessive time to long run
and get into an unstable regime if the parameters in matrix
A and vector �b are not appropriately chosen (which can be
the case for the unconstrained GAs in which the population is
chosen stochastically). To avoid this problem, we make use of
a theorem namely; if an infinity norm of A, ‖A‖, is less than
one then the iteration scheme �uk+1 = A�uk + �b will converge to
the steady state equations:

�u = (I − A)−1 �b, (3.3)

Table 1
The lower bound and upper bound of the parameter values used in genetic
algorithm parameter estimations

Parameters Lower bound Upper bound

L+
1 0.05 20

L+
2 0.05 20

L+
3 0.05 20

L−
1 5 1500

L−
2 5 1500

L−
3 5 1500

�1 15 2500
�2 5 1500
�3 1 500
k+

1 0.01 100
k+

2 0.01 100
k+

3 0.01 100
K+ 0.001 10
kgtpG�� 0.01 100
V 0 2500
kec 0 2500
kd 0 2500
krec 0 2500
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Fig. 3. Simulated concentrations and response curves for the three separate
pathways obtained by using genetic algorithm to fit the data in Fig. 3 of
Chen et al. [10]. For illustrative purposes, the parameter values of RUN1 in
Table 2 were used.

Table 2
The parameter values for concentrations and response curves obtained by
using genetic algorithm

Parameters RUN1 RUN2 RUN3

L+
1 0.0503 9.7134 1.909

L+
2 0.0511 8.9495 8.160

L+
3 0.1303 14.278 1.1368

L−
1 133.25 461.126 198.04

L−
2 27.742 696.71 1483.5

L−
3 5.934 1486.8 312.01

�1 87.728 2499.9 667.49
�2 47.852 1350.9 14.573
�3 13.376 361.42 6.5537
k+

1 45.319 28.16 99.994
k+

2 9.3357 34.27 99.640
k+

3 0.7807 42.86 92.338
K+ 0.2974 0.0054 0.3048
kgtpG�� 1.731 39.829 28.2727
V 0.00001 0.0001 0.0403
kec 189.27 1.573 15.927
kd 6.178 0.00005 1425.9
krec 2436 2129 785.61
Fitness values 0.7838 5.142 0.1392

Three independent runs were performed to obtain the three sets of parameter
values.

where I is the identity matrix and the infinity norm of matrix
A is defined by [30]

‖A‖ ≡ max
i

∑
j

|aij |.

Thus, in generating a parameter estimation, we also impose a
nonlinear constraint ‖A‖ < 1. This constraint makes the prob-
lem of parameter estimation a lot easier, e.g., we are not con-
cerned if the population is in the unstable regions and there is
no need to use the iteration equation (3.2) to obtain to the steady
state. We simply use the steady state equation (3.3). To solve the
parameter estimation problem with the constrained GA, we use
the Augmented Lagrangian Genetic Algorithm (ALGA) which
is provided in Genetic Algorithm and Direct Search Toolbox
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in MATLAB� software [31,32]. In addition to the constraint
that ‖A‖ < 1, we also impose lower and upper bounds on each
parameter value as shown in Table 1. The GA was performed
by using 60 individuals of population and was run up to 100
generations.

4. Results and discussion

For the purpose of testing our model, first it will be used to
reproduce a result like that in Fig. 3 of Chen et al. [10]. We
use their Eq. (2.33) to generate the data points (50 data points
for each curve). After a total 150 data points are obtained,
we use our model with the help of the constrained GA to fit
that data by minimizing the fitness function (3.1). We run the
GA several times, but only the three sets of parameters value
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Fig. 4. Time evolution of the fitness value during the calculation of the three
sets of kinetic parameters. Notice a fast decrease in the fitness value in the
early generations.

Table 3
The parameter values for agonists NECA and CPA obtained by using genetic algorithm

Parameters NECA CPA

RUN1 RUN2 RUN3 RUN1 RUN2 RUN3

L+
1 18.85 19.99 6.68 19.95 14.13 3.54

L+
2 16.10 9.84 13.92 13.65 13.72 1.42

L+
3 0.1253 0.05 0.05 8.197 19.99 1.07

L−
1 1498 458.22 664.44 1499 191.95 528.35

L−
2 1457 481.01 787.19 1105 622.52 432.37

L−
3 87.08 684.35 1346.88 1312 162.93 27.57

�1 2116 1805.25 2042.98 2499 64.03 75.73
�2 1007 37.25 981.49 53.55 5.59 29.53
�3 500 6.90 499.99 32.77 180.64 20.19
k+

1 75.41 99.82 54.92 98.98 99.36 96.65
k+

2 79.25 95.91 28.60 68.23 72.25 99.99
k+

3 0.7303 16.53 15.79 0.1328 0.010 0.010
K+ 0.0089 0.265 0.0095 1.155 1.416 1.509
kgtpG�� 81.22 13.58 46.72 78.07 23.13 35.67
V 0.0001 0.680 0.0001 0.0021 0.3274 0.0038
kec 0.0095 577.71 0.4741 53.00 706.65 2.201
kd 0.00004 1086 9.98 911.7 147.77 145.61
krec 453.3 2494 2476 2494 2461 2465
Fitness values 13.1123 0.00025 7.48 0.3121 0.0052 2.577

In each agonist types, three independent runs were performed to obtain the three sets of parameter values.

obtained are shown in Table 2. By inserting the parameter
values in RUN1 into our model equations (2.29)–(2.34), the
numerical solutions of the steady state active G-proteins con-
centrations are shown in Fig. 3. Note, however, that the system
under investigation does not guarantee that the inverse problem
has one unique solution. We could say only that we have found
a good solution but that might not be the best solution. If we
look at Table 2, we can see that among all of the three parame-
ter sets, �1 > �2 > �3, which is a result that we could expect for
the G1-linked pathway to have a higher efficacy (i.e., inducing
higher maximum response) [10]. If the receptor synthesis rate
V is large, the receptor degradation rate kd tends to be large
also. Fig. 4 shows a time evolution of the fitness value during
the calculation of the three sets of kinetic parameter values in
Table 2. The fitness value decreases very fast in the early gen-
erations, but in the later generations the fitness value decreases
very slowly.

To verify the validity of the model, we also qualitatively re-
produce the experimental results given by Cordeaux et al. [7].
In the experiment of Cordeaux et al., they investigated the effect
of two agonists, NECA and CPA, on adenosine A1 receptors
which can couple to three different families of G-protein, Gi ,
Gs and Gq , where each family of G-protein regulates specific
classes of effector molecules within the cell. In this study, they
found that NECA had a higher efficacy while CPA appeared to
have a higher potency (having lower EC50). To be consistent
with our model, we thus set Gi = G1, Gq = G2 and Gs = G3.
We rescale the agonist concentrations by using a0 = 108 M−1,
so that A = A × 108 and, for the purpose of a good parame-
ter estimation by using GA, we use the steady state solutions
given in [10] and the experimental data given in Fig. 9 of [7]
to generate the data points (50 data points per curve). The con-
strained GA was run several times for each agonist; the three
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Fig. 5. Simulated data of the effect of CPA and NECA, given relative to the
maximum response of CPA, on G-protein activation for G1, G2 and G3. In
this figure, for illustrative purposes, the parameter values of both CPA and
NECA in RUN1 shown in Table 3 were used.

representative sets of parameter values for CPA and NECA are
shown in Table 3. The best fitness value for NECA is 0.00025
while that of CPA is 0.0052. For both NECA and CPA, we
found that the inequality �1 > �2 > �3 is frequently true but
not always (e.g., parameter values for CPA in RUN2). So the
parameter values obtained by using the GA is frequently and
qualitatively consistent with the results obtained in [7,10] where
they concluded that both agonists prefer the G1-linked path-
ways. The numerical solutions for the effect of CPA and NECA
on the three G-proteins activation are shown in Fig. 5. They are
in good agreement, at least qualitatively, with the concentra-
tion response curves reported in [7]. From this figure, we can
clearly see that CPA appears to be more potent while NECA is
a more efficacious drug.

If we consider the trafficking event of the receptors, we found
that the internalization rate kec for the receptors which bind or
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Fig. 6. Steady state concentrations of internalized receptors bound to CPA
(above) and NECA (below). The concentrations of all species of internal-
ized receptors increase as the agonist concentration increases and, at the
same agonist concentration, R1∗

Ai
> R2∗

Ai
> R3∗

Ai
which is quite obvious when

�1 >�2 >�3. In this figure, for illustrative purposes, the parameter values
of both CPA and NECA in RUN1 shown in Table 3 were used.

couple to CPA is frequently larger than the rate for those which
bind or couple to NECA. This finding suggests that not only the
efficacy and potency of receptors [6,8], but also the internal-
ization event and other kinds of trafficking events of receptors
may depend on the types of agonists. Fig. 6 shows the steady
state concentrations of internalized receptors which bound to
agonists CPA and NECA. The concentrations of all species of
internalized receptors increase as more agonists become avail-
able to bind with free receptors R. The curves of steady state
concentrations of all internalized activated receptor types have
the same trend as that of the activated G-protein concentra-
tions shown in Fig. 3, that is, at the same agonist concentration,
R1∗

Ai > R2∗
Ai > R3∗

Ai , which is quite obvious when �1 > �2 > �3.

5. Conclusions

In this work, we have extended a mathematical model pro-
posed in [10] to include the trafficking events of G-protein cou-
pled receptors (GPCR). The trafficking events we consider here
include receptors synthesis, receptors internalization, recycling
of receptors and receptors degradation. Taking the number of
G-protein subtypes in the system to indicate the number of
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receptor conformations, our model assume four receptor states,
including one resting, to account for coupling separately to G1,
G2 and G3. When the trafficking events of receptors are inte-
grated into the model, we have found extra information which
indicates that the internalization event and other kinds of traf-
ficking events of membrane receptors may depend on the types
of agonists which bind to them. The lack of kinetic interaction
rates measured in reliable in vivo and in vitro experiments is
currently the major limitation to the creation of complex models
of signaling pathways. Thus, we have also used the constrained
GA to estimate sets of unknown parameters. With the param-
eter values estimated by the GA, the model is able to predict
pathways-dependent agonist potency and efficacy as observed
by Cordeaux et al. [7].
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